(x^2-7x+12)=(x+6)

Simple and best practice solution for (x^2-7x+12)=(x+6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2-7x+12)=(x+6) equation:



(x^2-7x+12)=(x+6)
We move all terms to the left:
(x^2-7x+12)-((x+6))=0
We get rid of parentheses
x^2-7x-((x+6))+12=0
We calculate terms in parentheses: -((x+6)), so:
(x+6)
We get rid of parentheses
x+6
Back to the equation:
-(x+6)
We get rid of parentheses
x^2-7x-x-6+12=0
We add all the numbers together, and all the variables
x^2-8x+6=0
a = 1; b = -8; c = +6;
Δ = b2-4ac
Δ = -82-4·1·6
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{10}}{2*1}=\frac{8-2\sqrt{10}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{10}}{2*1}=\frac{8+2\sqrt{10}}{2} $

See similar equations:

| -10+9j=7j+10 | | 2(2v+7=42 | | 22x=11=4x-7 | | -10-y=y | | 2(v+7)=42 | | 2n+5-4=n-4 | | -2z-3=-z | | 10+8k=6k | | 3(x+7)=5x−7 | | 5m-25=4(6m+8) | | 3y^2-20y+60=0 | | 259=154-y | | 115=-x+196 | | 4(-3x+4)=22 | | 164=-w+52 | | 5n+12=1/5(5+10n) | | 8w+45=17w | | 54-x=8x | | -3{3x-1}+x-5=6 | | 3(8-x=27 | | 3x×0.3=3.3 | | (2x+1)(3x+2)-(x-3)(x+2)=3(x+1)(3x-4) | | 3.7(-83x-3)=3.7(7x-3) | | 8x-2x+5=25 | | -8x+15+7x=21 | | 5(v-6)-8=-4(-8v+6)-9v | | 15x+32-16x=16-3x-24 | | 15x-24=-8+6x+x | | 8v+24=12v | | 142-x=295 | | -24+18x-15=8x-12+x | | -3(-7u+8)-u=2(u-3)-3 |

Equations solver categories